Zeta functions that hear the shape of a Riemann surface by Gunther Cornelissen and
نویسندگان
چکیده
To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose “Riemannian” aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson-Sullivan measure. We prove that the ergodic rigidity theorem for this boundary action implies that the zeta functions of the spectral triple suffice to characterize the (anti-)conformal isomorphism class of the corresponding Riemann surface. Thus, you can hear the shape of a Riemann surface, by listening to a suitable spectral triple.
منابع مشابه
Zeta functions that hear the shape of a Riemann surface
To a compact hyperbolic Riemann surface, we associate a finitely summable spectral triple whose underlying topological space is the limit set of a corresponding Schottky group, and whose “Riemannian” aspect (Hilbert space and Dirac operator) encode the boundary action through its Patterson-Sullivan measure. We prove that the ergodic rigidity theorem for this boundary action implies that the zet...
متن کاملToroidal Automorphic Forms for Some Function Fields
Zagier introduced toroidal automorphic forms to study the zeros of zeta functions: an automorphic form on GL2 is toroidal if all its right translates integrate to zero over all nonsplit tori in GL2, and an Eisenstein series is toroidal if its weight is a zero of the zeta function of the corresponding field. We compute the space of such forms for the global function fields of class number one an...
متن کاملA more accurate half-discrete Hardy-Hilbert-type inequality with the best possible constant factor related to the extended Riemann-Zeta function
By the method of weight coefficients, techniques of real analysis and Hermite-Hadamard's inequality, a half-discrete Hardy-Hilbert-type inequality related to the kernel of the hyperbolic cosecant function with the best possible constant factor expressed in terms of the extended Riemann-zeta function is proved. The more accurate equivalent forms, the operator expressions with the norm, the rever...
متن کاملArithmetic Equivalence for Function Fields, the Goss Zeta Function and a Generalization
A theorem of Tate and Turner says that global function fields have the same zeta function if and only if the Jacobians of the corresponding curves are isogenous. In this note, we investigate what happens if we replace the usual (characteristic zero) zeta function by the positive characteristic zeta function introduced by Goss. We prove that for function fields whose characteristic exceeds their...
متن کاملHierarchy of the Selberg zeta functions
We introduce a Selberg type zeta function of two variables which interpolates several higher Selberg zeta functions. The analytic continuation, the functional equation and the determinant expression of this function via the Laplacian on a Riemann surface are obtained.
متن کامل